

Genomics Explained - How Our Future Scientists Will Lead Change

Nicola Williams, Consultant Clinical Scientist and Scientific Lead, Scottish Strategic Network for Genomic Medicine, NHS National Services Scotland

NHS

SCOTLAND

Evolution of NHS Genomic Services: timeline

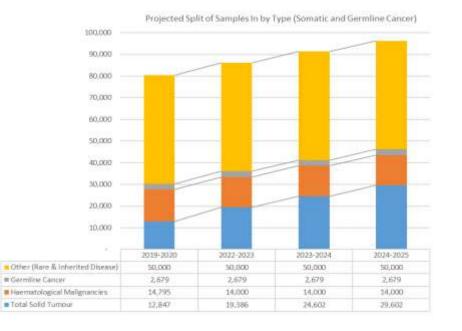
- The Human Genome Project (HGP) was a research project to sequence the Human Genome.
- Began in 1990 and was 'completed' in 2003, 92% by 2003 and fully sequenced by 2022.
- International collaboration involving >20 universities and research centres, cost >\$3 billion.
- Today you can sequence and analyse a human genome in <7 days, cost <\$1000.
- I became a trainee clinical scientist in 1998 based in the Manchester genetics laboratory.
- New sequencing technology emerged 1995 2000, more genetic testing available in the NHS.
- In 1998 genetic laboratory service undertook small scale targeted testing for core/ common genetics inherited disorders.
- In 1998 clinical scientists undertook laboratory wet work and analysis reporting of result.
- By 2022 genetic laboratory services under large scale genomic test for inherited disorders (common and rare disease) and cancer.
- By 2022 clinical scientists office based delivering analysis and reporting of complex results.

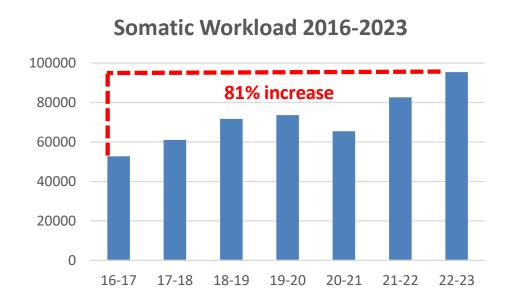
Why are NHS Genomic Services Changing?

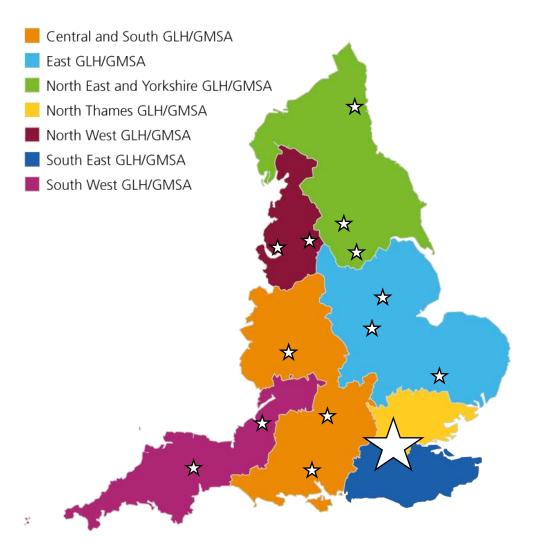
Gene1kB data
1-2 variants

Gene panel 50kB data ~ 100 variants

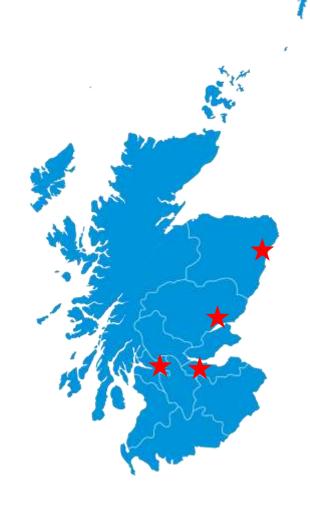
Exome 60MB data ~ 55,000 variants


Genome
3.2GB data
~ 3 million variants




Why are NHS Genomic Services Changing?

- Large increase in workload, particularly for cancer as genomics is used to determine diagnosis, prognosis and treatment of patients.
- ISD predicts a significant increase in cancer incidence from 2023-2027 when compared to 2008-2012, majority of which will require a genomic test.
- Cost of genomic service in Scotland is also increasing.


Genomics Landscape in England: 7 Genomic Laboratory Hubs (GLH)

- Population 56.5 million.
- Consolidated 20+ genomic laboratories down to 7 regional Genomic Laboratory Hubs.
- Each GLH serves a population between 7.5 9 million.
- Majority of 'wet lab' work has been centralised.
- Analysis and report of results harmonised across a GLH.
- As you scale up sequencing capacity to larger instruments, cost becomes cheaper.
- All GHLs have been tasked with delivering the same Genomic Test Directory = equity NHSE.

Genomics Landscape across in Scotland

- Population 5.5 million (10th size of England).
- 4 regional genomics laboratories located in Aberdeen, Dundee, Edinburgh and Glasgow.
- Aberdeen 17%, Dundee 8%, Edinburgh 26%, Glasgow 49%.
- Inherited disorders delivered as a distributed service delivery model.
- Cancer is largely delivered out of all 4 labs with some specialisation for rare solid tumour and leukaemia.
- Currently no standardisation across Scotland for laboratory wet work or analysis and reporting of results.
- NSD undertook a Major Review and the Genomics Services across Scotland which was published in March 2022.
- 17 recommendation including the formation of a new Genomics Strategic Network and a Genomics Transformation Team.

Transformation of Genomic Services in Scotland

- I'm the scientific lead for the new Scottish Strategic Network for Genomic Medicine (SSNGM) and the lead of the Genomics Transformation Team (GTT).
- 4 people working in the GTT, three of whom are scientists.
- Based within National Service Division (NSD) of National Services Scotland (NSS) and work closely with the Scottish Genomics Policy Team and the NSD Commissioning Team.
- New way of working taking a full system 'Once for Scotland' approach by linking transformation, future planning and service delivery to Scottish Government Policy.
- Genomics Transformation Team remit is to deliver the review recommendations and,
 - ✓ Standardisation of data and laboratory processes (including QM).
 - Financial savings for reinvestment of future services.
 - Demand optimisation.
 - Strategic planning and horizon scanning.
 - Delivery of new services.

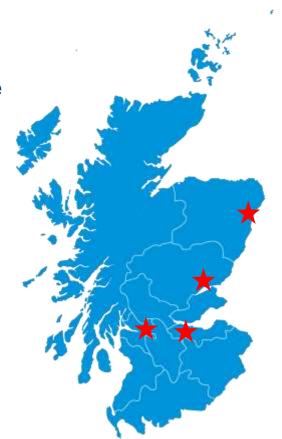
Healthcare Scientist Leading Change in Genomics

- Fast moving scientific discipline, move at pace.
- Embracing change and getting involved.
- Moving into new leadership positions (GTT).
- Joining working groups and driving change forward.
- Get on board with the vision.
- Make friends and influence by building your leadership network.
- Small talk matters.
- Find other ways of doing things.
- Ask a friend.
- Be willing to compromise and adjust the plan.

Workforce

Data Standardisation

Cancer Pathways



Service Delivery Model

Future Delivery Models: thinking outside the current box

- Current delivery model has four labs in Scotland all working independently.
- This model is not sustainable for the future due to rising cost.
- The infrastructure requirements for whole genome sequencing is expensive and we can't all do it!
- What are the options?
- Less laboratories or connect the existing laboratories up?
- Moving to a 'GLH' like structure for Scotland?
- Digitally connecting to include Scotland wide LIMS?
- Centralised data and IT infrastructure?
- Centralisation of laboratory wet work?
- Outsourcing if cheaper?
- All have pros and cons but ultimately a new delivery model is required to fully transform the genomic services in Scotland.

